The relationship between ecosystem services and human modification displays decoupling across global delta systems

  • Cumming, G. S. et al. Implications of agricultural transitions and urbanization for ecosystem services. Nature 515, 50–57 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Cumming, G. S. & Von Cramon-Taubadel, S. Linking economic growth pathways and environmental sustainability by understanding development as alternate social-ecological regimes. Proc. Natl. Acad. Sci.115, 9533–9538 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    CAS 
    Article 

    Google Scholar
     

  • de Groot, R. S., Alkemade, R., Braat, L., Hein, L. & Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272 (2010).

    Article 

    Google Scholar
     

  • Clapp, J. Financialization, distance and global food politics. J. Peasant Stud. 41, 797–814 (2014).

    Article 

    Google Scholar
     

  • Crona, B. I. et al. Masked, diluted and drowned out: how global seafood trade weakens signals from marine ecosystems. Fish Fish. 17, 1175–1182 (2016).

    Article 

    Google Scholar
     

  • United Nations Environment Programme International Resource Panel. Decoupling Natural Resource Use and Environmental Impacts from Economic Growth (2011).

  • Srinivasana, U. T. et al. The debt of nations and the distribution of ecological impacts from human activities. Proc. Natl. Acad. Sci. 105, 1768–1773 (2008).

    Article 

    Google Scholar
     

  • Rist, L. et al. Applying resilience thinking to production ecosystems. Ecosphere 5, 1–11 (2014).

    Article 

    Google Scholar
     

  • Dermody, B. J. et al. A virtual water network of the Roman world. Hydrol. Earth Syst. Sci. 18, 5025–5040 (2014).

    Article 

    Google Scholar
     

  • Maskell, L. C. et al. Exploring the ecological constraints to multiple ecosystem service delivery and biodiversity. J. Appl. Ecol. 50, 561–571 (2013).

    Article 

    Google Scholar
     

  • Potschin, M. B. & Haines-Young, R. H. Ecosystem services: Exploring a geographical perspective. Prog. Phys. Geogr. 35, 575–594 (2011).

    Article 

    Google Scholar
     

  • Peng, J. et al. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 607–608, 706–714 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Millennium Ecosystem Assessment. Ecosystems and human well-being: Biodiversity synthesis (2005). https://doi.org/10.1057/9780230625600

  • Díaz, S. et al. Assessing nature’s contributions to people: Recognizing culture, and diverse sources of knowledge, can improve assessments. Science 359, 270–272 (2018).

    Article 

    Google Scholar
     

  • Wallace, K. J. Classification of ecosystem services: Problems and solutions. Biol. Conserv. 139, 235–246 (2007).

    Article 

    Google Scholar
     

  • Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016).

    Article 

    Google Scholar
     

  • Bennett, E. M., Peterson, G. D. & Gordon, L. J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404 (2009).

    Article 

    Google Scholar
     

  • Saidi, N. & Spray, C. Ecosystem services bundles: Challenges and opportunities for implementation and further research. Environ. Res. Lett. 13, 113001 (2018).

  • Cord, A. F. et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosyst. Serv. 28, 264–272 (2017).

    Article 

    Google Scholar
     

  • Mitsch, W. J. & Gosselink, J. G. The value of wetlands: importance of scale and landscape setting. Ecol. Econ. 35, 25–33 (2000).

    Article 

    Google Scholar
     

  • Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. 107, 5242–5247 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Hamann, M., Biggs, R. & Reyers, B. Mapping social-ecological systems: Identifying ‘green-loop’ and ‘red-loop’ dynamics based on characteristic bundles of ecosystem service use. Glob. Environ. Change 34, 218–226 (2015).

    Article 

    Google Scholar
     

  • Macklin, M. G. & Lewin, J. The rivers of civilization. Quat. Sci. Rev. 114, 228–244 (2015).

    Article 

    Google Scholar
     

  • Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article 

    Google Scholar
     

  • Stanley, D. J. & Warne, A. G. Sea level and initiation of Predynastic culture in the Nile delta. Nature 363, 435–438 (1993).

    Article 

    Google Scholar
     

  • Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article 

    Google Scholar
     

  • Edmonds, D. A., Caldwell, R. L., Brondizio, E. S. & Siani, S. M. O. Coastal flooding will disproportionately impact people on river deltas. Nat. Commun. 11, 1–8 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Renaud, F. G. et al. Tipping from the Holocene to the Anthropocene: How threatened are major world deltas? Curr. Opin. Environ. Sustain. 5, 644–654 (2013).

    Article 

    Google Scholar
     

  • Santos, M. J. & Dekker, S. C. Locked‑in and living delta pathways in the Anthropocene. Sci. Rep. 10, 19598 (2020).

  • Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).

    Article 

    Google Scholar
     

  • Seto, K. C. Exploring the dynamics of migration to mega-delta cities in Asia and Africa: Contemporary drivers and future scenarios. Glob. Environ. Change 21, S94–S107 (2011).

    Article 

    Google Scholar
     

  • Carpenter, S. R., Stanley, E. H. & Vander Zanden, M. J. State of the World’s Freshwater Ecosystems: Physical, Chemical, and Biological Changes. Annu. Rev. Environ. Resour. 36, 75–99 (2011).

    Article 

    Google Scholar
     

  • Dugan, P. J. et al. Fish migration, dams, and loss of ecosystem services in the mekong basin. Ambio 39, 344–348 (2010).

    Article 

    Google Scholar
     

  • Notebaert, B., Broothaerts, N. & Verstraeten, G. Evidence of anthropogenic tipping points in fluvial dynamics in Europe. Glob. Planet. Change 164, 27–38 (2018).

    Article 

    Google Scholar
     

  • Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. 104, 12942–12947 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Minderhoud, P. S. J. et al. The relation between land use and subsidence in the Vietnamese Mekong delta. Sci. Total Environ. 634, 715–726 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    Article 

    Google Scholar
     

  • FAO. AQUASTAT Database. (2022). Available at: https://www.fao.org/aquastat/statistics/query/index.html. (Accessed: 14th February 2022)

  • Chau, N. D. G., Sebesvari, Z., Amelung, W. & Renaud, F. G. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environ. Sci. Pollut. Res. 22, 9042–9058 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Phien-wej, N., Giao, P. H. & Nutalaya, P. Land subsidence in Bangkok, Thailand. Eng. Geol. 82, 187–201 (2006).

    Article 

    Google Scholar
     

  • Käkönen, M. Mekong Delta at the crossroads: more control or adaptation? Ambio 37, 205–212 (2008).

    Article 

    Google Scholar
     

  • Smajgl, A. et al. Responding to rising sea levels in the Mekong Delta. Nat. Clim. Change 5, 167–174 (2015).

    Article 

    Google Scholar
     

  • Schneider, P. & Asch, F. Rice production and food security in Asian Mega deltas—A review on characteristics, vulnerabilities and agricultural adaptation options to cope with climate change. J. Agron. Crop Sci. 206, 491–503 (2020).

    Article 

    Google Scholar
     

  • Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Davis, M., Faurby, S. & Svenning, J. C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl. Acad. Sci. 115, 11262–11267 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Arowolo, A. O., Deng, X., Olatunji, O. A. & Obayelu, A. E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 636, 597–609 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Lang, Y. & Song, W. Quantifying and mapping the responses of selected ecosystem services to projected land use changes. Ecol. Indic. 102, 186–198 (2019).

    Article 

    Google Scholar
     

  • Tilman, D., Reich, P. B. & Isbell, F. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc. Natl. Acad. Sci. 109, 10394–10397 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

  • Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Evolution of the global virtual water trade network. Proc. Natl. Acad. Sci. 109, 5989–5994 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Van Asselen, S., Verburg, P. H., Vermaat, J. E. & Janse, J. H. Drivers of wetland conversion: A global meta-analysis. PLoS One 8, e81292 (2013).

  • Davidson, N. C., Fluet-Chouinard, E. & Finlayson, C. M. Global extent and distribution of wetlands: trends and issues. Mar. Freshw. Res. 69, 620–627 (2018).

    Article 

    Google Scholar
     

  • Gordon, L. J., Finlayson, C. M. & Falkenmark, M. Managing water in agriculture for food production and other ecosystem services. Agric. Water Manag. 97, 512–519 (2010).

    Article 

    Google Scholar
     

  • Syvitski, J. P. M. & Kettner, A. J. Sediment flux and the anthropocene. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 957–975 (2011).

    Article 

    Google Scholar
     

  • Nienhuis, J. H. et al. Global-scale human impact on delta morphology has led to net land area gain. Nature 577, 514–518 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Stott, I., Soga, M., Inger, R. & Gaston, K. J. Land sparing is crucial for urban ecosystem services. Front. Ecol. Environ. 13, 387–393 (2015).

    Article 

    Google Scholar
     

  • Caldwell, R. L. et al. A global delta dataset and the environmental variables that predict delta formation. Earth Surf. Dyn. Discuss. 7, 773–787 (2019).

    Article 

    Google Scholar
     

  • Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos (Washington DC) 89, 93–94 (2008).

  • USGS. HYDRO1k Elevation Derivative Database. https://doi.org/10.5066/F77P8WN0 (2000).

  • CIESIN – Center for International Earth Science Information Network Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC) https://doi.org/10.7927/H4JW8BX5 (2018).

  • Venter, O. et al. Last of the Wild Project, Version 3 (LWP-3): 2009 Human Footprint, 2018 Release. NASA Socioeconomic Data and Applications Center https://doi.org/10.7927/H46T0JQ4 (2018).

  • Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 1–11 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zeileis, A., Leisch, F., Hornik, K. & Kleiber, C. strucchange: An R package for testing for structural change in linear regression models. J. Stat. Softw. 7, 1–38 (2002).

    Article 

    Google Scholar
     

  • Monti, S., Tamayo, P., Mesirov, J. & Golub, T. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52, 91–118 (2003).

    Article 

    Google Scholar
     

  • Reader, M. O. et al. Zenodo. https://doi.org/10.5281/zenodo.6346472 (2022).

  • QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2019).

  • R Core Team. R: A language and environment for statistical computing. (2020).