Partial oxidation of methane to methanol on boron nitride at near critical acetonitrile

  • Kuld, S. et al. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science 352, 969–974 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sushkevich, V. L., Palagin, D., Ranocchiari, M. & Van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ravi, M., Ranocchiari, M. & van Bokhoven, J. A. The direct catalytic oxidation of methane to methanol—A critical assessment. Angew. Chem. Int. Ed. 56, 16464–16483 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Narsimhan, K., Iyoki, K., Dinh, K. & Román-Leshkov, Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent. Sci. 2, 424–429 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dinh, K. T. et al. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeolites. J. Am. Chem. Soc. 141, 11641–11650 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jin, Z. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367, 193–197 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Williams, C. et al. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization. ACS Catal. 8, 2567–2576 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Shi, C. et al. Direct conversion of methane to methanol and formaldehyde over a double-layered catalyst bed in the presence of steam. Chem. Commun. https://doi.org/10.1039/cc9960000663 (1996).

    Article 

    Google Scholar
     

  • Almond, M. J. et al. Carbonyl sulfide (OCS) as a sulfur-containing precursor in MOCVD: A study of mixtures of Me2Cd and OCS in the gas and solid phases and their use in MOCVD. J. Mater. Chem. 6, 1639 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Kondratenko, E. V. et al. Catalysis Science & technology perspective methane conversion into different hydrocarbons or oxygenates: Current status and future perspectives in catalyst development and reactor operation. Catal. Sci. Technol. 7, 19–33 (2014).


    Google Scholar
     

  • Latimer, A. A., Kakekhani, A., Kulkarni, A. R. & Nørskov, J. K. Direct methane to methanol: The selectivity-conversion limit and design strategies. ACS Catal. 8, 6894–6907 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Brown, M. J. & Parkyns, N. D. Progress in the partial oxidation of methane to methanol and formaldehyde. Catal. Today 8, 305–335 (1991).

    CAS 
    Article 

    Google Scholar
     

  • Feng, N. et al. Efficient and selective photocatalytic CH4 conversion to CH3 OH with O2 by controlling overoxidation on TiO2. Nat. Commun. https://doi.org/10.1038/s41467-021-24912-0 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trinh, Q. T., Banerjee, A., Yang, Y. & Mushrif, S. H. Sub-surface boron-doped copper for methane activation and coupling: First-principles investigation of the structure, activity, and selectivity of the catalyst. J. Phys. Chem. C 121, 1099–1112 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Collins, N. A., Debenedetti, P. G. & Sundaresan, S. Disproportionation of toluene over ZSM–5 under near-critical conditions. AIChE J. 34, 1211–1214 (1988).

    CAS 
    Article 

    Google Scholar
     

  • Theyssen, N., Hou, Z. & Leitner, W. Selective oxidation of alkanes with molecular oxygen and acetaldehyde in compressed (supercritical) carbon dioxide as reaction medium. Chem. A Eur. J. 12, 3401–3409 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Brock, E. E., Oshima, Y., Savage, P. E. & Barker, J. R. Kinetics and mechanism of methanol oxidation in supercritical water. J. Phys. Chem. 100, 15834–15842 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Savage, P. E., Li, R. & Santini, J. T. Methane to methanol in supercritical water. J. Supercrit. Fluids 7, 135–144 (1994).

    CAS 
    Article 

    Google Scholar
     

  • Savage, P. E., Rovira, J., Stylski, N. & Martino, C. J. Oxidation kinetics for methane/methanol mixtures in supercritical water. J. Supercrit. Fluids 17, 155–170 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Savage, P. E. Organic chemical reactions in supercritical water. Chem. Rev. 99, 603–621 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ferrieri, R. A., Garcia, I., Fowler, J. S. & Wolf, A. P. Investigations of acetonitrile solvent cluster formation in supercritical carbon dioxide, and its impact on microscale syntheses of carbon-11-labeled radiotracers for PET. Nucl. Med. Biol. 26, 443–454 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jessop, P. G. & Subramaniam, B. Gas-expanded liquids. Chem. Rev. 107, 2666–2694 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, J. H. & Foster, N. R. Direct partial oxidation of methane to methanol in supercritical water. J. Supercrit. Fluids 9, 99–105 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Webley, P. A. & Tester, J. W. Fundamental kinetics of methane oxidation in supercritical water. Energy Fuels 5, 411–419 (2002).

    Article 

    Google Scholar
     

  • Dixon, C. N. & Abraham, M. A. Conversion of methane to methanol by catalytic supercritical water oxidation. J. Supercrit. Fluids 5, 269–273 (1992).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, X. et al. Methanol conversion on borocarbonitride catalysts: Identification and quantification of active sites. Sci. Adv. 6, 5778–5802 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Wang, G., Zhang, X., Yan, Y., Huang, X. & Xie, Z. New insight into structural transformations of borocarbonitride in oxidative dehydrogenation of propane. Appl. Catal. A Gen. 628, 118402 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Li, S., Zhang, X., Huang, X., Wu, S. & Xie, Z. Identification of active sites of B/N co-doped nanocarbons in selective oxidation of benzyl alcohol. J. Colloid Interface Sci. 608, 2801–2808 (2022).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, Y. et al. Methane activation over a boron nitride catalyst driven by: In situ formed molecular water. Catal. Sci. Technol. 8, 2051–2055 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Grant, J. T. et al. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. Science 354, 1570–1573 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Venegas, J. M. et al. Selective oxidation of n-butane and isobutane catalyzed by boron nitride. ChemCatChem 9, 2118–2127 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Tian, J. et al. Direct conversion of methane to formaldehyde and CO on B2 O3 catalysts. Nat. Commun. https://doi.org/10.1038/s41467-020-19517-y (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, A. M. et al. Probing the transformation of boron nitride catalysts under oxidative dehydrogenation conditions. J. Am. Chem. Soc. 141, 182 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Turner, G. L., Smith, K. A., Kirkpatrick, R. J. & Oldfield, E. Boron-11 nuclear magnetic resonance spectroscopic study of borate and borosilicate minerals and a borosilicate glass. J. Magn. Reson. 67, 544–550 (1986).

    ADS 
    CAS 

    Google Scholar
     

  • Kroeker, S. & Stebbins, J. F. Three-coordinated boron-11 chemical shifts in borates. Inorg. Chem. 40, 6239–6246 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gervais, C. et al. 11B and 15N solid state NMR investigation of a boron nitride preceramic polymer prepared by ammonolysis of borazine. J. Eur. Ceram. Soc. 25, 129–135 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Huang, C., Liu, Q., Fan, W. & Qiu, X. Boron nitride encapsulated copper nanoparticles: A facile one-step synthesis and their effect on thermal decomposition of ammonium perchlorate. Sci. Rep. 5, 16736 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ci, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430. https://doi.org/10.1038/NMAT2711 (2010).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Huang, C., Ye, W., Liu, Q. & Qiu, X. Dispersed Cu2O octahedrons on h-BN nanosheets for p-nitrophenol reduction. ACS Appl. Mater. Interfaces 6, 14469–14476 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pilli, A. et al. In situ XPS study of low temperature atomic layer deposition of B2 O3 films on Si using BCl3 and H2O precursors articles you may be interested in in situ XPS study of low temperature atomic layer deposition of B2 O3 films on Si using BCl3 and H2O precursors. J. Vac. Sci. Technol. A 36, 61503 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gesser, H. D. & Prakash, C. B. Chemical reviews the direct conversion of methane to methanol by controlled oxidation. Chem. Rev. 85, 235 (1985).

    CAS 
    Article 

    Google Scholar
     

  • Sato, T., Watanabe, M., Smith, R. L., Adschiri, T. & Arai, K. Analysis of the density effect on partial oxidation of methane in supercritical water. J. Supercrit. Fluids 28, 69–77 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Gagliardi, L. G., Castells, C. B., Ràfols, C., Rosés, M. & Bosch, E. Static dielectric constants of acetonitrile/water mixtures at different temperatures and Debye-Hückel A and a 0 B parameters for activity coefficients. J. Chem. Eng. Data 52, 1103–1107 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Hong Wei Xiang. The Corresponding-States Principle and Its Practice (Elsevier, 2005).


    Google Scholar
     

  • Srinivasan, K. R. & Kay, R. L. The pressure dependence of the dielectric constant and density of acetonitrile at three temperatures. J. Solut. Chem. 6, 357–367 (1977).

    CAS 
    Article 

    Google Scholar
     

  • Brennecke, J. F. & Eckert, C. A. Phase equilibria for supercritical fluid process design. AIChE J. 35, 1409–1427 (1989).

    CAS 
    Article 

    Google Scholar
     

  • Kim, S. & Johnston, K. P. Clustering in supercritical fluid mixtures. AIChE J. 33, 1603–1611 (1987).

    CAS 
    Article 

    Google Scholar
     

  • Ikushima, Y., Saito, N. & Arai, M. Supercritical carbon dioxide as reaction medium: Examination of its solvent effects in the near-critical region. J. Phys. Chem. 96, 2293–2297 (1992).

    CAS 
    Article 

    Google Scholar
     

  • Petrenko, V. E., Gurina, D. L. & Antipova, M. L. Structure of supercritical water: The concept of critical isotherm as a percolation threshold. Russ. J. Phys. Chem. B 6, 899–906 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Gribov, L. A., Novakov, I. A., Pavlyuchko, A. I., Korolkov, V. V. & Orlinson, B. S. Spectroscopic calculation of CH bond dissociation energies for aliphatic nitriles. J. Struct. Chem. 45, 771–777 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Shi, L. et al. Progress in selective oxidative dehydrogenation of light alkanes to olefins promoted by boron nitride catalysts. Chem. Commun. 54, 10936–10946 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Venegas, J. M. et al. Why boron nitride is such a selective catalyst for the oxidative dehydrogenation of propane. Angew. Chem. Int. Ed. 59, 16527–16535 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Grant, J. T. et al. Boron and boron-containing catalysts for the oxidative dehydrogenation of propane. ChemCatChem 9, 3623–3626 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Zakaria, Z. & Kamarudin, S. K. Direct conversion technologies of methane to methanol: An overview. Renew. Sustain. Energy Rev. 65, 250–261 (2016).

    CAS 
    Article 

    Google Scholar